Данный курс ориентирован на программистов, использующих Python или имеющих дело с машинным обучением, которые хотят более детально разбираться в возможностях RL.
Основное внимание в курсе уделяется вопросам, которые возникают при работе с RL в реальной жизни, а также рассматриваются основные алгоритмы, которые лежат в основе новейших систем RL.
Слушатели получат теоретические знания не только о RL, но и о машинном обучении в целом, а также возможность применить эти знания на практике. Начав с основ линейной алгебры, математического анализа и теории вероятностей, мы затем рассмотрим вопросы динамического программирования и марковские процессы, распространенные методы Q-обучения и его глубокие варианты, а также некоторые градиентные методы.
В этом курсе мы стремимся дать исчерпывающий обзор данной темы, по крайней мере в отношении различных базовых методов, описанных в специальной литературе.
Вторая половина курса посвящена исключительно RL с нейронными сетями, с подробным обсуждением современных исследований и разъяснение различных вариантов применения этого метода.
Кроме того, обсуждаются практические инструменты (от Pytorch до Ray), которые слушатели смогут использовать в упражнениях.
Необходимая подготовка:
Вузовская программа по математическому анализу, теории вероятностей, дискретной математике
Базовые знания в области машинного обучения
54 500 ₽
49 050 ₽ — для физ. лиц
Основы машинного обучения
Основы машинного обучения: классификация, регрессия, кластеризация, ансамбли, нейронные сети. Курс дает представление об основных группах методов машинного обучения и их применении для решения задач анализа текстов, прогнозирования цены и выдачи рекомендаций. В практической части курса участники будут работать с признаками, перебирать параметры моделей и строить ансамбли, используя язык Python.
32 000 ₽
Машинное обучение на практике
Вводный практический курс по машинному обучению. Рассматривается полный цикл построения решения: от выделения исходных данных («.xlsx файл») через построение модели и до объяснения конечному заказчику особенностей данных и специфики полученного результата. Теоретические разделы - классификация, регрессия, предсказания, ансамбли – даются в обзорном режиме, в объёме, необходимом для корректного построения и понимания разбираемых примеров.
39 000 ₽